Assessment of Random-noise Contamination in Digital Images via Testing on Wavelet Coefficients
نویسندگان
چکیده
Full-reference image quality assessment methods seek to measure visual similarity between two images (in practice, one original and the other its altered version). It has been established that traditional methods, such as Mean Square Error and Peak Signal-to-Noise Ratio poorly mimic the human visual system and much of the recent research in image quality assessment has been directed toward developing image similarity measures that are more consistent with assessments from human observers. Some extensively tested popular methods in this regard are Visual Image Fidelity (VIF), Structure Similarity Index (SSIM) and its variants Multi-scale Structure Similarity Index (MS-SSIM) and Information Content Weighted Multi-scale Structure Similarity Index (IW-SSIM). However, experiments show that these methods may produce drastically different similarity indices for different images contaminated with the same source of random noise. In this article, we propose a new full-reference image quality assessment method, namely, Wavelet-based Non-parametric Structure Similarity Index (WNPSSIM), specifically designed to detect visual similarity between images contaminated with all sorts of random noises. WNPSSIM is based on a rank test of the hypothesis of identical images conducted on the wavelet domain. Our experimental comparisons demonstrate that WNPSSIM provides similar ranking as MS-SSIM, IW-SSIM and VIF for images contaminated with different random noises in general though the methodology is very different. In addition, WNPSSIM corrects the aforementioned shortcoming of assigning sharply different similarity indices for different images contaminated with the same source of random noise. AMS 2000 subject classifications: Primary 68U10, 97K80, 62H35; secondary 62G10.
منابع مشابه
Random-noise Contamination Assessment of Images via Non-parametric Hypothesis Testing on Wavelet Coefficients
Images encountered in our daily lives typically contain random noise of some level. The human visual system (HVS) has the ability to see through such noises at low level. It is desirable to replicate this ability in an image quality assessment method. Extensive experiments found that well-established full-reference image quality assessment methods, such as mean square error (MSE), structure sim...
متن کاملStatistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملAssessment of the Wavelet Transform for Noise Reduction in Simulated PET Images
Introduction: An efficient method of tomographic imaging in nuclear medicine is positron emission tomography (PET). Compared to SPECT, PET has the advantages of higher levels of sensitivity, spatial resolution and more accurate quantification. However, high noise levels in the image limit its diagnostic utility. Noise removal in nuclear medicine is traditionally based on Fourier decomposition o...
متن کاملSpeckle Reduction in Synthetic Aperture Radar Images in Wavelet Domain Exploiting Intra-scale and Inter-scale Dependencies
Synthetic Aperture Radar (SAR) images are inherently affected by a multiplicative noise-like phenomenon called speckle, which is indeed the nature of all coherent systems. Speckle decreases the performance of almost all the information extraction methods such as classification, segmentation, and change detection, therefore speckle must be suppressed. Despeckling can be applied by the multilooki...
متن کاملQuantitative Assessment of Conventional and Modern De-Noising on Nuclear Medicine Images
Introduction: One of the major problems in the development of nuclear medicine images is the presence of noise. The noise level in nuclear medicine images is usually reduced by the analysis of imaging data in a Fourier transform environment. The main drawback of this environment belongs to low signal to noise ratio in high frequencies because removing noise frequencies may remove data and times...
متن کامل